Kurs „Energy methods in the mechanics of metamaterials”

logo WIP

Zapraszamy pracowników i studentów PW na kurs „Energy methods in the mechanics of metamaterials” w charakterze „wolnego słuchacza”.
Kurs poprowadzą: Prof. Francesco dell’Isola (Università di Roma "La Sapienza, Włochy) oraz Prof. Anil Misra (University of Kansas, USA), Prof. Emilio Turco (Università degli Studi di Sassari, Sycylia), Prof. Massimo Cuomo (Università degli Studi di Catania), Dr Ivan Giorgio (Sapienza Università di Roma, Włochy).
Kurs będzie realizowany w wymiarze 60h w kolejnych tygodniach: 
15.05–20.05.2017, 22.05–26.05.2017, 29.05–02.06.2017.
Program i harmonogram zajęć poniżej.


Harmonogram zajęć w ramach kursu „Energy methods in the mechanics of metamaterials”:

data godzina sala
2017-05-15 (poniedziałek) 16:15-20:00 NT312b
2017-05-16 (wtorek) 16:15-20:00 NT341
2017-05-17 (środa) 16:15-20:00 NT341
2017-05-18 (czwartek) 16:15-20:00 NT341
2017-05-22 (poniedziałek) 16:15-18:00 NT312b
2017-05-23 (wtorek) 16:15-18:00 NT341
2017-05-24 (środa) 16:15-18:00 NT312b
2017-05-25 (czwartek) 16:15-18:00 NT341
2017-05-26 (piątek) 16:15-20:00 NT312b
2017-05-29 (poniedziałek) 16:15-19:00 NT312b
2017-05-30 (wtorek) 16:15-19:00 NT341
2017-05-31 (środa) 16:15-18:00 NT312b
2017-06-01 (czwartek) 16:15-19:00 NT341
2017-06-02 (piątek) 16:15-20:00 NT321


Program kursu „Energy methods in the mechanics of metamaterials”:

  1. Variational Principles for Discrete and Continuous Systems in Mechanics
    • Least Action Principle
    • Principle of Virtual Work
    • Lagrange Multipliers and Hellinger Principles
  2. Computational Methods of Structural Analysis
    • The structural model (geometry, configuration space)
    • Variational formulation of the problem. Weak vs. strong forms
    • Discrete problems. Examples
    • Basics of interpolation theory
    • Residual Methods
    • The Finite Element Method for linear systems
    • 1D examples (continuum models) - Gauss integration
    • 1D examples (structural models). Locking and unlocking.
  3. From Continuum to discrete and from discrete to continuum
    • Homogenization of discrete models
    • Analytical and numerical solutions
  4. Examples of Matlab codes to solve linear, nonlinear and time depending problems
    • Design of pantographic metamaterials
    • Hencky models for beams: statics and dynamics
  5. The use of Comsol
    • The package Structural Mechanics
    • Multi-field multi-physics problems
    • The use of Lagrange multipliers
  6. Example of Micromorphic Continuum Models for Granular Metamaterials
    • Micro-Macro Kinematic Identification
    • Some experimental evidence
    • Stress and force conjugates
    • Constitutive relations
    • Variational principles, inner equations and boundary conditions.
    • 1D Applications